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The Clark plot: a semi-historical case study 
M E R V Y N  S T O N E  

Department of Statistical Science, University College London, Cower Street, London, WClE 6BT, U.K. 

A study has been made of the origins of the quantitative theory of simple competitive 
antagonism as manifest in the papers of Gaddum and of Clark. The classical data of Clark 
on the antagonism of acetylcholine by atropine were reanalysed by recently developed 
computer-based methods. I t  was seen how close Clark came t o  initiating a method having 
the following significant advantages over the Schild plot: (i) symmetrical treatment with 
respect to  the control (zero antagonist) data; ( i i )  absence of difficulty with the cases where 
an estimated dose-ratio is less than unity; (iii) straightforward calculation of approximate 
standard errors for departure from overall simple competitivity a t  each antagonist level 
including control. 

The concept of simple competitive antagonism 
(Gaddum 1957) is thought to play an important role 
in the chemical stimulation and control of many 
biological responses. Two types of chemical agent or 
drug are involved: agonist and antagonist. These 
interact by their separate chemical combination with 
receptors located at  sites on the surfaces of particular 
cells. The agonist combines reversibly with the 
receptors with active consequences that determine 
the response level for the response metameter 
concerned. The effect of antagonist is to  combine 
reversibly with a fraction of the receptors, so that the 
agonist is excluded from those receptors occupied by 
antagonist. The response level is then supposed to be 
determined by the fraction of all receptor sites that 
are combined with agonist. 

Under these assumptions,’ standard chemical 
kinetics imply that when equilibrium is achieved, the 
response level is determined by the ratio 

A q =  __ 
KS + B 

where A and B are the free molar concentrations of 
agonist and antagonist respectively and KB is the 
dissociation constant of the reaction in which 
antagonist combines with receptor. 

Experimental studies, designed to provide esti- 
mates of Ks, are important to  pharmacologists 
because such estimates, especially if they are precise, 
can be used t o  classify the type of receptor involved 
and hence help to elucidate the biochemical basis of 
responses such as heart activity, stomach acidity and 
mental depression. 

Unfortunately, theory provides very little guidance 

Colquhoun (1973) has discussed the assumptions 
under which q determines the responses. 

as to  the form of the relationship between response 
level and the response determining ratio q, except 
encouragement for the belief that, in the absence of 
experimental variation, the relationship should be 
monotone. In practice, the experimental design has 
to ensure that the form of the relationship can be 
determined with sufficient accuracy to support valid 
estimation of Ks. 

C L A R K ’ S  D A T A  A N D  A N A L Y S E S  

For the agonist acetylcholine and the antagonist 
atropine, Clark (1926) plotted the response meta- 
meter 

R = log (-) P 
l o ( - P  

against log A where P was the percentage 
reduction in isometric contractive force of an isolated 
ventricular strip of frog’s heart. Clark made 55  
observations of R a t  a variety of values of A ,  B. 
The values of (log A ,  R) have been read from Clark’s 
graph as listed below*. Clark did not state his 

* B = 0 :  (-7.29, -1.08) (-7’29, -1.04) (-6.62, 
-0.80) (-6.69, -0.72) (-6.62, -067) (-6.62, 
-0.58) (-6.28, -0.43) (-6’62, -0.36) (-6.28, 
-0.32) (-6.28, -0.06) (-5.80, 0.06) (-S.60, 0.31) 
(-5.60, 0.43) (-5.60, 0.48) (-5.60, 0.64) (-5.28, 0.78) 
(-5.28, 0.84) (-5.28, 1.12) (-4.61, 1.70) (-4.30, 1.70) 
B = (-6.29, -0.48) (-5.73,  -0.14) (-5.60, 
0.06) (-5.60, 0.24) (-5.23, 0.72) (-4.61, 1.37) 

-0.14) (-5.32. 0.08) (-5.31. 0.16) (-4.61. 1.06) 
B = lo-’: (-6.29, -1.06) (-5.60, -0.28) (-5.60, 

B = (-4.62, -1.02) (-4.32, -1.02) (-3.62, 
-0.20) (-3.33, -0.07) (-3.33. 0.12) (-3.33. 0.41) . .  _ .  
(-2.62, 1.12) 
B = (-3.30. -1.33) (-3.30. -0.83) (-3.30. 
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experimental design; it is possible that all 5 5  readings 
were made on just one ventricular strip. 

It appears that Clark fitted a straight line by eye 
to the data at each antagonist level, with independent 
slopes, and read off the values of log A at which the 
lines gave R = 0, corresponding to a 50% reduction 
in isometric contraction farce. (In his own later re- 
analysis of the data, Clark 1937, quoted the corre- 
sponding values of A x lo6 as I ,  1.6, 3.6, 25, 300, 
3500, 47 OOO in order of increasing antagonist level.) 
Clark (1926) plotted his estimate of log A for 
R = 0 against log B and tentatively fitted, as in 
Fig. 1, a line that was straight with unit slope for A 
values exceeding 

His admitted difficulty with the necessary flattening 
of the relationship at the lower end would have been 
resolvable if he had exploited the mathematical 
relationship stated by Gaddum (1926) for the case of 
the agonist adrenaline and the antagonist ergot- 
amine, acting jointly on rabbit uterus. Gaddum 
utilized an experimental design of the type that is 
now widely adopted for antagonist studies. Each 
piece of uterus was tested at different values of A, 
firstly in the absence of antagonist ( B  = 0) to 
establish a ‘control’ graph of response against log A 
and then at just one positive level of B to establish a 
second graph. Gaddum either fitted parallel curves to 
each such pair of graphs or used a bracketing 
method (from his account it is not clear which), in 
order to estimate what he called the ‘adrenalin 
proportion’ but which would now be called the dose- 
ratio, r ,  for equal response. Gaddum’s discovery was 
that ‘When similar pieces of the same uterus were 
tested with varying concentrations of ergotamine, it 
was found that over as wide a range as was con- 
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Atropine: log B 

FIG. 1. The isobol tentatively fitted by Clark ( 1926). 

venient the adrenalin proportions have a linear 
relation to the concentration of ergotamine.’ 

Despite his reference to ‘similar results’ obtained 
by earlier pharmacologists, it is possible that 
Gaddum’s verbal statement, which has received little 
recognition, is the first formulation of the dose-ratio 
version of the law of simple competitive antagonism: 

Paton, 1970, referred to other aspects of Gaddum’s 
paper but almost suggests that Gaddum did not 
formulate (2) until 1957. 

It seems that Clark independently discovered how 
to deal with his fitting problem. In an appendix to 
Mendez (1928), he noted that Fig. 1 is better fitted 
by the formula 

(3) 

where A, A ,  are the estimates of A giving R = 0 for 
level B and control respectively. Apart from dif- 
ferences with respect to the design and analysis, 
equations (2) and (3) are equivalent if the constant 
in (3) is taken to be A,/K,%. Later, Clark (1933, 
p. 235) fitted the generalized equation 

A - A 0  
B” 

. .  . .  ,. = const. . . (4) 

to the data of Fig. 1 and estimated the value of n to 
be 1.1.  

Ironically, a whole decade after the initial dis- 
coveries of Gaddum and Clark, a peculiar contre- 
temps arose between them concerning the formula- 
tion of these empirical equations. Gaddum (1937) 
objected to (4), apparently on the grounds that it 
appears to rule ou t  constancy of r = A / A o  for 
constant B. Clark (1937) accepted the objection and 
then, paradoxically, used Gaddum’s absolutely 
equivalent version of (4) with n = 1 to derive (3) in 
the guise: 

. . ( 5 )  KIA = 1 + KZB . . . .  . .  

where Kl and K ,  are constants. 
He fitted (5) directly to his 1926 data to obtain the 
estimates Kl = 10%‘ and K z  = 3 x lO7~- l .  The 
latter is equivalent to KB = 10-7 .5~ .  

It appears likely that, if Clark in 1926 had seen, 
appreciated and exploited Gaddum’s verbal state 
ment of (2), he would have been led to the presently 
ubiquitous Schild plot (Schild 1957). This is because 
the very wide range of B values, from to lo-’ 
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would probably have induced him to write (2) in the 
logarithmic form 

log ( r  - 1 )  = -log KB + log B . . , . (6) 

in preparing a graphical plot. Equation (6) defines the 
 child plot. 

I L L U S T R A T I V E  R E A N A L Y S I S  O F  C L A R K ’ S  

D A T A :  T H E  ‘ C L A R K  PLOT’ 

The appendix contains the details of a computer- 
based reanalysis of Clark’s 1926 data, using the 
G L I M ~  system and the methods developed by 
Stone & Angus (1978). These follow the general 
approach of Waud (1975) in employing a n  iterative 
”on-linear least-squares procedure that fits curves 
simultaneously to  the whole data set. The facilities of 
the GLIM system are, however, exploited to give 
greater flexibility in the choice of dose response 
function, as well as to allow linear adjustments for 
covariates and experimental design variables. The 
approach requires determination, by trial and error 
if necessary, of a suitable empirical equation to  fit 
the dose-response curves. Although Clark (1926) 
may well have been influenced by some current 
theory in his choice of dose-response function, our 
findings are that the choice was in fact acceptable on 
purely empirical grounds; it fitted his observations. 

The residual sum of squares for fitting common 
slope straight lines (of R against log A )  is 1.644 with 
47 degrees of freedom, while the residual sum of 
squares for fitting indeperidenr slope straight lines (as 
Clark did) is 1-464 with 41 degrees of freedom. The F 
value for a test of parallelism is {(1.644-1.464)/ 
(47-41)) /( 1.464/41) = 0.84, supporting the accept- 
ability of parallelism which is a n  essential ingredient 
of simple competitivity. The output of the common 
slope fit was used for the Schild plot in Fig. 2: for 
example, the dose ratio ( r )  for the highest level (7) of 
antagonist is 10 to the power of (difference in 
intercept/slope) which can be seen to be 5.068/ 
1.073 = 4.723, giving r 7- 52,900 (cf. Clark’s 47 000). 
If we were to use Fig. 2 to estimate K,$, this would 
be done by fitting a straight line with unit slope and 
taking KU to be the value of B a t  which the ordinate 
is zero. The problem, here of little consequence but 
Potentially quite troublesome for other Schild plots, 
would be what weight should be attached to  the 
different points, especially the lowest. Because of the 
Proximity of the fitted line for B = lo-* M to  the 

* Purchasable from the GLIM Coordinator, Numeri- 
Ql Algorithms Group Ltd., 7 Banbury Road, Oxford, 
0x2 6”. In  1979, the PDPll/Release 3 version cost 
about LIW.  

-9 -8 -1 -6  -5 -C -3 
atropine log B 

FIG. 2. The Schild plot for Clark’s 1926 data. 

control line, it is clear that the corresponding point 
must have appreciably greater variance than the 
others. Instead of going into the statistical analysis 
needed to suggest an appropriate weighting for log 
( r  - I ) ,  it will be preferable to introduce the 
remainder of the calculations detailed in the Appen- 
dix and to  allow the reader to assess the merits of so 
doing. Using the special macros for the straight line 
dose-response function, the least squares estimate of 
K,,, in the fitting of the single competitivity equation 

simultaneously to all 55 observations, was given as  
2.60 x M with estimated standard error 0.32 x 
lo-” M. This was obtained in just 2 cycles of a n  
iterative fitting procedure starting with estimates of 
the common slope h and of Ke from the previous 
fitting of the common slope straight lines. The F 
value for a test of whether the spacings between 
these common slope straight lines are consistent 
with simple competitivity is given by {(2.022-1.644)/ 
(52-47) )/( 1.644/47) = 2.2 which is not significant a t  
the 5 %  level. So we have further support for the 
simple competivity model and its associated KB 
estimate of 2.60 x 1 0 - 8 ~ .  The associated 95% 
confidence limits for p K s  = -log Ks are 7.59 & 
0.1 1 (cf. Clark’s pKB of 7.5!). 

The Appendix gives the output of the quantities 
necessary to determine the position on the Clark plot 
of the control point; the calculations are precisely the 
same for the other points, since the Clark plot does 
not give the control data any special status as does the 
Schild plot. For B = 0, the ordinate is log A B  = log 
(KB + B)  + A, = -7.58-0.02122 = -7.60. Fol- 
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lowing the method of Appendix 2 of Stone & Angus 
(1978), the standard error of (which is the devia- 
tion from the ‘Unit line’ All = KB $- B i.e. q -= I )  is 
estimated as 

(2.652 x (?g))’/ (20 x 0.4678 x ln10) 

= 0.015. 

Note that for this control point, A, (which would be 
zero for perfect agreement with simple competitivity) 
is therefore 0~021/0.015 = 1.4 standard deviations 
from zero. This compares with the larger value of 1.8 
standard deviations for the A,, for B = lo-* M. 
The final Clark plot is given in Fig. 3. 

It should be clear that we d o  not estimate K R  from 
the plot, as is the common practice for the Schild 
plot. Rather, it is necessary to  have K B  already 
estimated in order to construct the Clark plot which 
is for  graphical display only. 

Finally, the Appendix shows how tests of ‘power 
departure’ and ‘quadratic departure’ from the simple 
competitivity equation (7) are performed. (These 
departures replace the B in (7) by Bn and B(l + 
nB/Kr,) respectively). The first n corresponds to the 
Schild slope and is found to have 95”/, confidence 
limits 1.06 0.06. The second n has limits 0.13 x 

./- 
&Control value 

FIG. 3. The ‘Clark plot’ for Clark’s 1926 data. A B  
denotes the estimate of the acetylcholine concentra- 
tion for a particular constant level of response, when the 
atropine concentration is B. The points therefore lie on 
an estimated isobol. The straight line of unit slope gives 
the true isobol for competitive antagonism in the 
absence of experimental error; the isobol selected 
corresponds to the same level of response, which is 
given when A = K B  + B. The bars give estimated 2 s.e. 
limits for the deviations of the individual points from 
the true isobol due to experimental error. 

i 0.17 Y Both findings give further 
credence to  the simple competitivity model for these 
data. The acceptability of the fit of the model may 
also be judged from Fig. 4. 

D I S C U S S I O N  

In relation to the historical element in this paper, 
especially to  Clark‘s use of equation (9, what our 
‘Clark plot’ does is to  use a n  alternatively derived 
estimate of K2(= I/&) and plot log A against log 
(KR + B )  for a level of response such that K, is 
effectively unity. 

The widespread use of the Schild plot is probably 
due to: 
(a) its link with dose-ratio, which is a basic concept 
for simple competitivity in view of its independence 
of response level and which can be regarded as  a 
datum for within-preparation designs involving 
control and one level. of antagonist; 
(b) its linearity on convenient logarithmic scales 
facilitating speedy estimation of n and, if a slope of 
unity can be acceptably imposed, of thepKs value as 
an intercept. 

However when parameter estimation is now done 
so easily by computer, we can devote more attention 
to the matter of informative display of the degree to 
which the spacings of the dose-response lines fit the 
theory of simple competitive antagonism. The Clark 
plot gives no special status to  the control value, 
which makes its appearance on the plot along with 
the points for non-zero antagonist concentrations; it 
accepts the arbitrary element in the choice of isobol 
(that is, equi-response level) in order to preserve the 
symmetry of presentation. This is in contrast to the 
Schild plot where, as was found to  be the case for the 
histamine/metiamide data of Angus et al (1978), the 
plotting technique can even result in the further 
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FIG. 4. The Clark data and their simultaneous fitting by 
a simple competitivity model. 
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necessary omission of values where r < 1 ,  with 
associated impoverishment of the graphical display. 
Furthermore the ‘Clark plotter’ is never faced with 
the dilemma of a ‘Schild plotter’ who finds that he 
has a deviant control value and would like to  display 
the degree to which the non-control points conform 
to simple competitivity among themselves. Finally, 
it is possible to calculate easily standard errors for the 
Clark plot, as illustrated in Fig. 3, whereas such 
calculation is less straightforward for the Schild plot. 

It appears that Clark developed his isobol method 
for plotting data (of which our Clark plot is but a 
trivial modification) concurrently but independently 
of Loewe (1926). Later Loewe (1957) drew attention 
to what may be the first isobol for antagonism, that 
of Fraser (1870-71). 

R E F E R E N C E S  

Angus, J. A,, Black, J. W., Stone, M. (1978) Brit. J.  

Clark, A. J. (1926) J. Physiol. 61 : 547-556 
Clark, A. J. (1933) The Mode of Action of Drugs on 

Cells, Edward Arnold and Co London 
Clark, A. J. (1937) Handbook Exp. Pharmacol. 4: 

Colquhoun, D. (1973) in: Rang, H. P. (ed.), Drug 
Receptors, Macmillan: London & Basingstoke, 

Fraser, T. R. (1870-71) Proc. R. SOC. Edinburgh 7: 

Gaddum, J .  H. (1926) J. Physiol. (London) 61, 141-150. 
Gaddum, J .  H. (1937) Ibid. 89, 7P 
Gaddum, J .  H. (1957) Pharmacol. Rev. 9: 211-218 
Loewe, S., Muischnek, H. (1926) Arch. Exp. Pathol. 

Loewe, S. (1957) Pharmacol. Rev. 9: 237-242 

Pharmacol. 62: 445P 

184-1 86 

pp 149-182 

506-51 1 

Pharmakol. 114: 313-326 
. . .  

Mendez, R. (1928) J. Pharmacol. 32: 451-464 
Paton, W. D. M. (1970) in: Porter, R., O’Connor, M. 
(eds), Molecular Properties of Drug Receptors, J .  & A. 

Acknowledgements 
I am grateful to Peter 
Research Laboratories for his careful calliDer Churchill : London pp 3-32 

Of the Wekome 

measurements of the Clark graph and indebted to 
Jim Angus, J. W. Black, D. H. Jenkinson and a 

Schild, H. 0. (1957) Pharmacol. Rev. 9: 242-246 
Stone, M., Angus, J. A. (1978) J. Pharm. Exp. Ther. 

Methods in Pharmacology, Vol. 3, Smooth Muscle, 
Plenum Press. New York 

207: 705-718 referee for their valued advice and encouragement‘ Waud, D. R. (1975) i n :  Daniel, E. E. & paton, M, (ed.), 

APPENDIX: GLlM PROCEDURES FOR THE CLARK DATA 

GLIM 3.10 (C) 1977 ROYAL STATISTICAL SOCIETY, LONDON 
$UNITS 5 5  $DATA LEVB LOGA R 
$READ 1 -7.29 -1.08 The first column, LEVB, denotes the ‘level of B’ 

$PRINT LEVB LOGA R 
$PLOT R LOGA 
$CAL B=O* %EQ(LEVB,l)+ lO**(LEVB-2)* %NE(LEVB,l) Gives B in M units. 
* A =  lO**LOGA Converts LOGA into A in M units. 
~ F A C  LEVB 7 

Input of the 55 data points. 

from 1 (control) to 7 

Prints inputted data for checking. 
Graphs R against log A for inspection. 

Makes LEVB a factor coding for analysis of 

M). 7 ’  -I.& 0.27 

SYVAR R 
$FIT LEVB+LOGA FDIS E 

CYCLE DEVIANCE D F  
1 1.644 47 

variance. 
Declares R as the ‘y  variable’ for statistical analysis. 
To fit common slope straight lines against log A at 
each level of B and to display estimates. 
The ‘deviance’ of 1.644 is the residual sum of 
souares. 

ESTIMATE S.E. PARAMETER S:E. denotes the estimated standard error. 
*1 6.515 0.2343 %GM The intercept at logA=O for the ‘control’ line. 

*7 -5.068 0.1848 LEVB(7) 
Changes in the intercept for the ‘experimental’ lines : 
basis of Schild dot .  

2 -0‘3062 0.8889E41 LEVB(2) 
. .  . .  

* 8  1.073 0.3858E-01 LOGA ’ 
$FIT LEVB+LEVB*LOGA $ 

CYCLE DEVIANCE D F  

The least squareskstimate of the common slope. 
To fit straight lines with independent slopes. 

1 1.464 41 Note the slight reduction in deviance. 
SINPUT 10 NLMl FL FLP FLQ CLARKPLOT CFL 
$ARC M1 FL 

Input of special macros required. 
Selects the FL macro for the linear dose-response 

$USE NL $FIT BETAfKB $DIS E 

2 2.022 52 
CYCLE DEVIANCE D F  

function. 
Initial guesses of common slope and KB value from 
lines * above. Slope value changed for natural 
logarithms InA. 
With FL, defines competitivity model. 

The deviance, 2.022, compares with 1.644 above to  
give test of competitivity (see text). 
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ESTIMATE S.E. PARAMETER 
1 6.961 0.2650 %GM 
2 0.4678 0’1713E-01 BETA 

3 2.597 0.3193 KB 
$CAL RES= %YV-%FV 
$PRINT RES 
$ARC CLARKPLOT CFL 
$CAL % E = l  $USE CLARKPLOT S 

CYCLE DEVIANCE DF 
1 20 -0.21228-01 

1 2.652 52 

$YVAR R $ARC MI FLP 
$CAL %N= 1 
$USE NL $FIT BETA+KBt 

CYCLE DEVIANCE 
3 1.884 

ESTIMATE 
1 7.062 
2 0.4622 
3 3.990 
4 1.055 

- N  $DIS E 
DF 
51 

S.E. 
0.2641 
0.1 695E-01 
0.961 6 
0’2788 E-0 1 

PARAMETER 
%GM 
BETA 
KB 
N 

$ARC M1 FLQ 
$CAL %B=0.4678 : %K=2.597 : %N=O 

$USE N L  $FIT BETA+KB+N $DIS E 
CYCLE DEVIANCE DF 

2 1.905 51 
ESTIMATE S.E. PARAMETER 

1 h-949- 0.2601 YGM 

Estimate of common slope under competitivity 
model. 
The KB estimate is 2.6 with s.e. 0.3 (lo-* M units). 
Calculates residuals ( y  values minus fitted values). 
Prints residuals for assessment. 
Prepares for Clarkplot calculations. 
LEVB has replaced B in the CLARKPLOT macro 
and %E refers to the level of B. 
Level of B, no observations, &I. 
Deviance is ‘DevianceB’. 
Calculations repeated for the remaining 6 levels of 
B. 
Prepares for fitting the power departure model. 
Sets initial guess for ‘Schild slope’. 
To fit ‘power departure’ model 

Least squares estimate of Schild slope. 
Prepares for fitting the ‘quadratic departure’ model. 
Sets initial guesses: N is now the quadratic para. 
meter. 

2 0.4644 0.1691E-01 BkTA 
3 2439 0.3804 KB 
4 0.1312E-04 0’8694E-05 N 


